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Sieves and Signal Extraction (Unclassified)

1. Summary: See DD 1473, item 19.

2,3. Research object:ives, status of work: Part of this project

is to generalize the work of Driscoll [1973, 1975) on signal

extraction. A brief description is given below; more detail may

be found in the original project proposal.

To describe the current status of this work, let (St , te}l)

be a Gaussian process (signal) with mean 0 and known covariance

K. Here H is an arbitrary set. The sample path of the process

is denoted S.. Let R be any positive definite kernel with

reproducing kernel Hilbert space (RKHS) M(R) = t(R,R), and assume

that R dominates K (K<<R), i.e. that W(K) c M(R). Using the

concept of n-domination (K <n< R) (Fortet [1974]), we have:

Theorem A. If K << R but not K <n< R, then P(SeR(R)) = 0.

This generalizes a result of LePage (1973], for K = R.

The desired converse of Theorem A is: K < n< R * P(SER(R))

1, where the completion-measurability of the event (S e X(R)) is

part of the conclusion, as in Theorem A. Driscoll's proof of

this result appears to be incomplete. Thus far we can show the

following: Let 7 be the family of finite subsets of 7, and for

each T e 7 let

Z T  T Z IS

(norm in R(R,T), where S is restricted to T). Call (ZTr T 7 7)

the derived process of S. Then by Fortet [1973] we see that the

sets
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(S. E M~(R)) and (sup TeYZT1

*are equal - call. the set A -and that on A we have 11S.112 sup Z T

* (norm in M(R)). The set A may not be measurable. Consider the

weak separability assumption

*(*) sup Te7ZT = e -th.supTT Z T a.s.

(The lattice-theoretic supremum is defined in Tucker [1967].)

We have

Theorem B.. If K <n<R and if (*) holds then P(SeX(R)) = 1.

It is not yet clear just how weak or strong (*) is. It

certainly holds in at least one of the cases Driscoll considers,

so that we have his [1973] zero-one law. In fact, as long as(*

* holds we have Kallianpur's zero-one law by letting K = R.

However, our formulation also characterizes the "zero" and "one"

parts of the law separately.

A second issue is optimal extraction of the signal S with

regard to the norm of R1(R). Let A xbe any a-algebra of

A
observable events such that St = E x St)is Gaussian. The

tL

J1

covariance C of S is dominated by K, and we can show:

Theorem C: If K <n < R, then C < n< R.

Corollar: If K <n< R and if the derived process of S satisfies

(*orthen P(Se.(R)) 1. It is not yet known whether it is he

sufficient to assume merely that S satisfies (*) In the .

Corollary. If both S and S satisfy (*) and if K <n< R, we wish

to show si

,odes

d or
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(1) E XIIS -S II E XI1S -h(-)11 for all h R(R),

and to evaluate the left hand side of (1).

Write V t = S t - St, with covariance D, say (so C + D = K).

Associate to K, C, and D the operators e, e c , eD on X(R) (as in

Fortet [1973]), all assumed nuclear, and satisfying 9 = ao + 9D

A 2
Theorem D. E XIIS -SII = tr aD'

(The value tr C given in Driscoll (1975] is incorrect.)

Finally, to prove the inequality (1) we will need to show

A
*that a cross-product term E X(S.-S.,S-h) vanishes a.s. It is

not yet clear how to do this.

We may mention one further result:

Theorem E. If K <n< R < < R1 , then K <n < R 1 " Thus there

are many RKHS's N(R) whose norm could be used to define optimal

signal extraction.

In Driscoll's original formulation, Ax was the o-algebra of

an observed signal X of form X t = St + Nt , where Nt is

independent Gaussian noise. The present formulation generalizes

this, so that the unobservable signal S t may be corrupted by

noise in other ways.

The other part of this project involves sieve estimation for

the mean and covariance of a Gaussian process. It has now been

shown, in a joint paper with A. Antoniadis, that the two sieves
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can be combined to give simultaneous consistent estimation of the

mean and the covariance functions. The original paper on mean

estimation has been revised and will appear in Annals of

Statistics. The paper on covariance estimation is being revised

for that journal.

A joint paper with M. O'Laughlin gives an axiomatic theory

of confounding which may be applicable to a variety of

experimental designs including those in which the set of factor

levels is arbitrary, possibly a continuum. In such cases one may

view the "vector" of observations as a stochastic process.
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4. Written Publications:

"A sieve estimator for the mean of a Gaussian process," Annals of
Statistics (to appear in March 1987).

"A sieve estimator for the covariance of a Gaussian process," Annals
of Statistics (in revision).

(with A. Antonladis) Joint estimation of the mean and the covariance
of a Banach valued Gaussian vector. Submitted to Journal of Applied
Probability.

(with M. O'Laughlin) The cell-means interpretation of confounding.
In manuscript.

5. Professional Personnel:

None besides the PI.

6. Interactions:

(a) Paper presented:

"Sieve estimation for Gaussian Processes," Colloquium, Dept
of Mathematics, University of California, Irvine, June 10,
1986.

(b) Consultative and advisory functions: Joint research with
A. Antoniadis on sieve estimation. Dept. of Mathematics,
UC-Irvine, June 9-11, 1986.

7. New discoveries, inventions, patents: none.
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